Valorisation du Ciste de Montpellier
(Cistus monspeliensis)
issu du débroussaillement des forêts de chêne liège
d’Ait Ghobri (Tizi-Ouzou) en panneaux de particules

Réalisé par :
- M° AMEYOUD Karim
- M°me BELKACEM Lynda

Soutenu publiquement devant le jury d’examen composé de :

M° ZERIZER Abdellatif Professeur UMBB Président
M° DERRIDJ Arezki Professeur UMMTO Promoteur
M° AKNOUCHE Hamid Maître de conférences A UMBB Promoteur
M° HAMMOUM Arezki Maître de conférences B UMMTO Examineur
M°me KROUCHI Fazia Maître de conférences A UMMTO Examinatrice

Promotion 2015
Dédicaces

Lynda

Je dédie ce modeste travail

À Mon très cher mari, sans ses sacrifices, son soutien moral, ses conseils et ses encouragements,
ce travail n’aurait vu le jour.

À mes très chers parents qui m’ont fourni au quotidien un soutien et une confiance sans faille et
de ce fait, je ne saurais exprimer ma gratitude seulement par des mots.

À mon cher frère Amine et sa femme Thamila; à ma chère sœur Sabrina, en témoignage de
l’attachement, de l’amour et d’affection que je leur porte.

À mes chers beaux-parents et ma belle sœur Dounia, qui m’ont accueilli dans leur famille à bras
ouverts: je leur dédie ce travail avec tous mes vœux de bonheur et de santé.

À ma belle famille en particulier LOUNES que je remercie de nous avoir aidé

À tous mes enseignants tout au long de mes études.

À tous ceux qui ont participé de près ou de loin à la réalisation de ce travail.

À tous ceux qui aiment et protègent l’environnement.
Karim

À la mémoire de mon grand-père Rabah

Je dédie le présent mémoire :

À celle qui m’a attendu avec patience pour les fruits de sa bonne éducation et ses sacrifices pour ma réussite,...À ma Mère Saliha.

À celui qui a fait preuve de soutien et qui m’a donnée une motivation sans prix,...À mon père Brahim.

À mes grands-parents Fatima Sadia et Amar

À celui et celle qui ont fait preuve de soutiens et qui m’ont donné une motivation sans prix,...À mon frère Nassim ma sœurs Sarah mon cousin Malek.

À mon binôme Linda et toute sa famille.

À mes amis Kamil, Moncef, Mayas, Samy, Farid, Yacine, Rabah, Moh pour leur aide précieuse.

À tous mes cousin et cousine.

À toute la promotion gestion des déchets solides et à tous mes enseignants durant mes études.

À Hakima, Malika et Zohra pour leurs aides précieuses.
Remerciements

Nous remercions d’abord Dieu le Tout Puissant, qui nous a donné la force et le courage de réaliser ce travail.

Nous remercions vivement nos promoteurs: Mr DERRIDJ Arezki, professeur à l’UMMTO et Mr AKNOUCHE Hamid, Maître de conférences HDR à l’UMBB, d’avoir accepté de diriger ce travail, pour leurs conseils, leurs orientations, leur patience et leur aide très précieuse.

Nous remercions Mr ZERIZER, Professeur à l’UMBB, d’avoir accepté de présider le jury.

Nous remercions Mr HAMMOUM Maître de conférences à l’UMMTO, et Mme KROUCHI Maître de conférence à l’UMMTO, d’avoir accepté d’examiner ce travail.

Nous remercions Melle BOULAHIA, Melle TOUATI, doctorantes à l’UMBB, ainsi que MALIKA, Ingénieur de laboratoire à l’UMBB pour nous avoir facilité l’accès au laboratoire et de nous avoir largement aidé pour réaliser ce mémoire.

Le personnel de l’entreprise TRANSBOIS qui est très chaleureux.

AMI RABEH et AMI SAID de l’unité de recherche (URMPE) de l’UMBB

Nous remercions LOUNES qui nous a beaucoup aidés sur le plan informatique

Nos remerciements s’adressent à tous nos enseignants, en particulier Mr HAMMOUM et Mme KROUCHI qui nous ont accompagnés tout au long de notre formation et qui ont su croire en nous.
Table de matières

Introduction générale..1

Partie 1 : Etude bibliographique ..3

Chapitre I : Le Ciste de Montpellier ..3

1. Historique ...3
2. Taxonomie ...3
3. Morphologie ..3
4. Ecologie ..4
 4.1 Les exigences climatiques ...4
 4.1.1 La température ..4
 4.1.2 La lumière ..4
 4.1.3 L’humidité du sol ...4
 4.1.4 Le vent ..5
5. Répartition ...5
6. Utilisation ...6
7. Estimation du tonnage du Ciste de Montpellier ...6
Conclusion ...7

Chapitre II : Panneaux de particules lignocellulosiques8

Introduction ..8
1. Définition ..8
2. Importance des panneaux de particules lignocellulosiques ..8
3. Classification des panneaux ...9
4. Le processus de fabrication des panneaux de particules lignocellulosiques10
 4.1. Le taux d’encollage : ..10
6. Pressage ..11
 4.2.1. Presse multi- étages ...11
 4.2.2. Presse continue ...11
 4.2.3. Système à injection de vapeur ...12
4.2.4. Préchauffage... 12
Conclusion... 12

Chapitre III : Les résines synthétiques et naturelles ... 14

Introduction .. 14
1. Résine urée formaldéhyde ... 14
2. Résine phénol-formaldéhyde ... 15
3. Résine mélamine urée formaldéhyde .. 16
4. Résine polyisocyanate .. 16
Conclusion... 17

Partie 2 : Matériels et méthodes ... 19

Chapitre I : Caractérisation de la matière fibreuse du Ciste de Montpellier 19

Introduction .. 19
1. Caractérisation chimique ... 19
1.1 Préparation des particules pour les analyses chimiques ... 19
1.2. Méthodologie de dosage de la cellulose, de l’hémicellulose et de la lignine 19
1.2.1. Extraction des extractibles à l’éthanol/toluène ... 20
1.2.2. Taux de cendre .. 20
1.2.3. Dosage des polysaccharides .. 21
1.2.4. Distinction de la quantité des hémicelluloses des celluloses 22
1.2.5. Dosage de la lignine de Klason .. 22
2. Caractérisation mécanique du Ciste de Montpellier ... 23
3. Caractérisation physique du Ciste de Montpellier ... 23
3.1. Détermination de la masse volumique du Ciste de Montpellier 23
3.2. Détermination de l’humidité du Ciste de Montpellier .. 24
4. Caractérisation thermique du Ciste de Montpellier ... 24
4.1. Analyse thermique du Ciste de Montpellier ... 24
Conclusion... 25
Chapitre II : Elaboration des panneaux de particules au laboratoire ... 26

Introduction .. 26

1. Les particules du Ciste de Montpellier .. 26
 1.1. Le broyage .. 26
 1.2. Le séchage .. 27
 1.3. Le tamisage des particules ... 28

2. Préparation du panneau avant le pressage à chaud .. 28
 2.1. Les panneaux de particules à trois couches ... 28
 2.2. Le cycle de pressage ... 29
 2.3. Caractérisation des panneaux de particules ... 30
 2.3.1. Découpe des panneaux de particules ... 30
 2.3.2. Détermination de la masse volumique des panneaux de particules 30
 2.3.3. Mesure des propriétés de flexion des panneaux de particules 31
 2.3.4. Détermination de la cohésion interne des panneaux de particules à l’état sec 32
 2.3.5. Détermination de la résistance à l’humidité (vieillissement) 32
 2.3.6. Détermination du gonflement en épaisseur ... 33

Conclusion .. 33

Partie 3 : Résultats et discussions .. 34

Chapitre I: Propriétés physico-chimiques et mécaniques de la matière fibreuse du Ciste de
Montpellier .. 34

Introduction .. 34

1. Caractérisation chimique du Ciste de Montpellier .. 34

2. Caractérisation physique du Ciste de Montpellier ... 35
 2.1. Détermination de la masse volumique du Ciste de Montpellier 35
 2.2. Détermination de l’humidité ... 36

3. Caractérisation thermique du Ciste de Montpellier .. 36

Conclusion .. 38
Chapitre II : Panneaux de particules à base du Ciste de Montpellier39

Introduction ..39
1. Détermination de la masse volumique des panneaux de particules ...39
2. Mesure des propriétés de flexion des panneaux de particules ..40
3. Détermination de la cohésion interne des panneaux de particules à l’état sec42
4. Détermination de la résistance à l’humidité (vieillissement) et du gonflement en épaisseur ...45
Conclusion...46

Conclusion générale et perspectives ...47
Références bibliographiques ..52
Liste des figures

Figure 1: Ciste de Montpellier (Belkacem et Ameyoud, 2015) ...4
Figure 2: Plan de situation du site de prélèvement (google earth) ..5
Figure 3: Nombre de plantules de cistes par m² dénombrés au cours des sept premiers mois après le passage du feu (Bekdouche, 2010) ..6
Figure 4: Taux d’encollage ...10
Figure 5: Presse continue de Transbois Béjaia (Belkacem et Ameyoud, 2015)12
Figure 6: Réaction du phénol avec le formaldéhyde. (Neya, 2002) ...15
Figure 7: Extraction des extractibles à l’éthanol/toluène (Belkacem et Ameyoud, 2015)20
Figure 8: Dosage des polysaccharides (Belkacem et Ameyoud, 2015) ..21
Figure 9: Dosage de la lignine de Klason(Belkacem et Ameyoud, 2015) ..23
Figure 10: Appareil d’analyse thermogravimétrique (STA 409 PC Luxx®). (Belkacem et Ameyoud, 2015) ..25
Figure 11: Images de l’entreprise TRANSBOIS par satellite Google earth 201126
Figure 12: Ciste de Montpellier: (a) avant le broyage, (b) après le broyage (Ameyoud et Belkacem, 2015) ..27
Figure 13: Séchoir de l’entreprise TRANSBOIS (Ameyoud et Belkacem, 2015)27
Figure 14: Particules du Ciste de Montpellier après le tamisage à différentes mailles28
Figure 15: Pressage des particules du Ciste de Montpellier. (Belkacem et Ameyoud, 2015)30
Figure 16: Banc d’essai de traction de marque ZWICK (Belkacem et Ameyoud, 2015)32
Figure 17: Thermogrammes des analyses thermogravimétriques (ATG/DTG) du Ciste de Montpellier ..36
Figure 18: Comparaison des valeurs du MOR des deux panneaux élaborés ...41
Figure 19: Comparaison des valeurs du MOE des deux panneaux élaborés ..41
Figure 20: Fissure de l’éprouvette après l’essai de flexion (Belkacem et Ameyoud, 2015)42
Figure 21: Comparaison des valeurs de l’IB sec des deux types de panneaux élaborés43
Figure 22: Fissure de l’éprouvette après traction perpendiculaire (Ameyoud et Belkacem, 2015)44
Figure 23: Eprouvettes décollées après traction longitudinale (Belkacem et Ameyoud, 2015)44
Figure 24: Gonflement en épaisseur (Belkacem et Ameyoud, 2015) ..46
Liste des tableaux

Tableau 1: Paramètres d’élaboration de panneaux de particules à base de particules du Ciste de Montpellier et de colle synthétique ... 29
Tableau 2: Caractérisation chimique du Ciste de Montpellier .. 34
Tableau 3: Masse volumique des différents échantillons du Ciste de Montpellier étudiés 35
Tableau 4: Taux d’humidité prélevé des différents échantillons du Ciste de Montpellier étudié. .. 36
Tableau 5: Comportement thermique de la fibre du Ciste de Montpellier .. 38
Tableau 6: Résultats des essais de masse volumique .. 39
Tableau 7: Propriétés mécaniques des panneaux testés ... 40
Tableau 8: Variations des résultats de cohésion interne humide et de gonflement en épaisseur en mm ... 45
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>Analyse thermogravimétrique</td>
</tr>
<tr>
<td>Gt</td>
<td>Gonflement</td>
</tr>
<tr>
<td>IB</td>
<td>Cohesion interne</td>
</tr>
</tbody>
</table>
| MDF | Medium Density Fibreboard
 | (Panneau de fibres (de bois) de densité moyenne) |
| MOE | Module of elasticity (module d’élasticité) |
| MOR | Module of rupture (module de rupture) |
| MPa | Méga Pascal |
| MUF | Mélanime Urée-formaldéhyde |
| PF | Phenol formaldehyde |
| PMDI | Polymeric methylene diphenyl diisocyanate |
| PVA | poly vinyl acétate |
| TS | Gonflement en épaisseur |
| UF | Urée-formol |
Introduction générale

L’incendie représente sans aucun doute le facteur de dégradation le plus ravageur des forêts méditerranéennes en général et de la forêt Algérienne en particulier. Toutefois, toutes les forêts sont soumises à la même loi du feu, parce que les trois éléments essentiels du triangle du feu sont universels : chaleur (flamme), comburant et combustible.

Là où le combustible végétal se trouve près des hommes, l’incendie peut naître, dès lors que l’environnement lui est favorable (densité de la forêt, vitesse du vent, sécheresse de la saison). Comme l’action de l’homme est incluse dans 2 des 3 éléments du triangle (l’homme apporte la flamme et modifie l’environnement), la genèse des feux de forêt est ainsi intimement liée à l’humain et à ses activités (Derridj et al., 2005).

Selon une étude de la FAO publiée en 2007, nous avons constaté qu’au niveau mondial, chaque année, la superficie des forêts touchée par des feux est d’environ 5 %. Le Bassin Méditerranéen n’échappe malheureusement pas à cette logique du feu, puisque plus de 55 000 incendies détruisent en moyenne chaque année de 500 000 à 700 000 ha de forêt méditerranéenne, causant des dommages écologiques et économiques énormes, ainsi que des pertes de vies humaines (Mitsopoulos et al., 2006).

Selon Henaoui (2013), parmi les espèces végétales les plus hautement inflammables représentant 86,84 %, nous retrouvons la famille des Cistacées dont le Ciste de Montpellier qui représente aussi un très bon combustible et pourrait accentuer la propagation des feux de forêt, un certain nombre d’informations sont données en Annexes 1 et 2. Ce qui pousse les autorités chaque année à débroussailler cette espèce afin d’éviter la propagation des feux de forêts.

Existe-t-il d’autres solutions écologiquement respectables, socialement viables et économiquement fiables pour cette espèce ?

Dans le cadre de la lutte préventive des incendies de forêts, le débroussaillement serait une alternative certaine. Les déchets issus de la coupe des espèces de sous bois pourraient être valorisés en nouveaux bio matériaux. Le Ciste de Montpellier, très abondant dans les formations forestières méditerranéennes, objet de notre étude, sera transformé en panneaux de particules qui seront soumis à différents facteurs physico-chimiques et mécaniques pour en tester les propriétés et les performances.
La présence de cette espèce méditerranéenne en grande quantité, disponible en Algérie dans les formations forestières pourrait avantageusement être mise au profit dans la réalisation des panneaux. Au delà de la fabrication de produits de substitution avec le ciste de Montpellier, il s'agit de favoriser le développement d'une activité économique aussi bien industrielle qu'artisanale.

Notre mémoire est structuré comme suit :

La première partie est consacrée à une synthèse bibliographique scindée en trois chapitres : Le premier chapitre, présente une description du Ciste de Montpellier, sa répartition géographique et son estimation en tonnage. Le deuxième chapitre, présente l’importance de la matière lignocellulosique dans la fabrication des panneaux de particules ainsi que les processus de fabrication des panneaux. Le troisième chapitre, présente la nature de la colle utilisée pour la fabrication des panneaux de particules.

La deuxième partie qui porte sur les matériels et méthodes est composée de deux chapitres: Le premier chapitre est dédié aux techniques de caractérisation physico-mécanique, chimique, et thermique de la matière fibreuse du Ciste de Montpellier. Le deuxième chapitre décrit la méthodologie de fabrication de panneaux de particules ainsi que les méthodes appliquées pour caractériser leurs performances conformément aux textes de normes en vigueur.

La dernière partie traite les résultats et discussions où le premier chapitre, présente les propriétés de la matière fibreuse du Ciste de Montpellier et le deuxième chapitre sera consacré à l’ensemble des résultats obtenus et l’élaboration des panneaux de particules à base de la matière fibreuse du Ciste de Montpellier.

Ce mémoire se termine par une conclusion générale rappelant ainsi les objectifs de ce mémoire et les principales conclusions et perspectives tirées de cette étude.
Partie 1 : Etude bibliographique

Chapitre I : Le Ciste de Montpellier

1. Historique

Le Ciste de Montpellier (*Cistus Monspeliensis*) dont le nom « Cistus » a été donné à ces plantes par Joseph Pitton de Tournefort. Il est assez proche des formes utilisées par les grecs de l'Antiquité (*cisthos*) (Dorvault, 1995).

2. Taxonomie

L'espèce *Cistus Montpeliensis* fait partie de la classe des dicotylédones, d'une famille de Cictaceae, la mieux connue sur le plan systématique. Selon Guignard (2007), la position systématique du ciste de Montpellier est comme suit :

- Embranchement: *Angiospermes* ;
- Classe: *Dicotylédones* ;
- Ordre: *Malvales* ;
- Famille: *Cistaceae* ;
- Tribu: *Cistacées* ;
- Genre: *Cistus* ;
- Espèce: *Cistus Monspeliensis* ;
- En Français: *Ciste de Montpellier ou fleur d’un jour* ;
- En Arabe: *Oum Aliya* ;
- En Kabyle: *Thouzelt* ;

3. Morphologie

Le Ciste de Montpellier (*Cistus Monspeliensis*) est un arbuste de la famille des Cistaceae. C’est un arbrisseau de taille moyenne mesurant entre 0,5 m et 1,2 m de hauteur. Son feuillage est persistant. Les feuilles sont opposées, allongées, étroites à bords enroulés, sécrétant une résine collante à odeur forte, lui procurant ainsi sa forte inflammabilité. Les fleurs sont formées de cinq pétales de couleur blanche, parfois colorées en jaune à leur base (Anonyme, 2007).
Les fruits sont des capsules ovales déhiscentes contenant de nombreuses graines (Quezel et al., 1963).

![Image de Ciste de Montpellier](image)

Figure 1: Ciste de Montpellier (Belkacem et Ameyoud, 2015).

4. Ecologie

Le Ciste de Montpellier est une espèce des garrigues et coteaux secs méditerranéens. Elle s’adapte parfaitement aux conditions difficiles des sols pauvres de la garrigue ainsi que des sols pauvres proches des zones côtières méditerranéennes. Cette espèce est présente sur les sols siliceux, acides. L’espèce est présente jusqu’à 1200 m d’altitude (Anonyme, 2008).

4.1 Les exigences climatiques

4.1.1 La température

Le Ciste est une plante rustique qui peut vivre dans un intervalle de température compris entre (-10 et 36°C) (Lahondere et al., 1979).

4.1.2 La lumière

Le Ciste de Montpellier est une espèce héliophile retrouvée dans les régions à forte luminosité. L’action de la lumière favorise la photosynthèse et la maturation des plantes, ainsi, ces plantes ne se développent complètement qu’en pleine lumière (Julve, 2015).

4.1.3 L’humidité du sol

Le sol dans lequel les Cistes de Montpellier sont retrouvés doit être bien drainé et sec. Lorsque la terre est lourde et humide, cette espèce ne survit pas longtemps (Camus, 1932).
Partie 1 : Etude bibliographique

Chapitre I : Le Ciste de Montpellier

4.1.4 Le vent

Le vent a une action mécanique et un pouvoir desséchant. Il augmente la transpiration des feuilles et entraîne le desséchement de ces dernières. C’est pour cela que cette espèce doit être abritée du vent (Anonyme, 2012).

5. Répartition

Lorsque la dégradation des sols est trop avancée, le Ciste de Montpellier couvre à lui seul des surfaces importantes. On le retrouve notamment dans les sols montagneux dégradés après une perturbation (incendie, débroussaillement...). Cette espèce végétale pérenne se régénère à partir de semences (voie sexuée). Ce qui lui permet de constituer des communautés importantes en région méditerranéenne (Guignard et al., 2007).

Pour le lieu de prélèvement du Ciste Montpellier pour notre étude, nous avons choisi le massif de Ait Ghobri qui se situe à une centaine de Kilomètres à l’Est d’ALGER dans la wilaya de TIZI OUZOU. La forêt d’Ait Ghobri est délimitée ainsi:

Au Nord, par le Mont TAMGOUT, au Sud par les villages Cheurfa N’BEHLOUL et CHBEL, à l’Est par la forêt d’AKFADOU et à l’Ouest, par la ville d’AZAZGA.
Cette forêt est rattachée administrativement à la circonscription forestière d’AZAZGA, elle couvre une superficie d’environ 6000 ha. La figure ci-dessous montre le lieu du prélèvement pour notre étude.

Figure 2 : Plan de situation du site de prélèvement (google earth 2011).
6. Utilisation

Il n’y a pas d’utilisation connue de cette plante. Chaque année des quantités importantes sont débroussaillées et brûlées afin d’éviter la propagation des feux de forêts (Detry, 2006).

7. Estimation du tonnage du Ciste de Montpellier

Les Cistes sont considérés parmi les espèces colonisatrices les plus communes des milieux incendiés du bassin méditerranéen (Troumbis et al., 1986). Malgré la quasi absence des Cistes aux stades matures des successions forestières, ils persistent généralement au niveau de la banque de graines du sol et réapparaissent rapidement en cas d’incendie.

Le Ciste de Montpellier, en raison de son importance durant les premiers stades des successions végétales, est très largement étudié au niveau de divers écosystèmes de la région méditerranéenne (Ferrandis et al., 1999).

En Afrique du Nord, à notre connaissance aucune donnée relative à ce sujet n’est disponible.

La figure suivante montre que l’essentiel des germinations apparaissent juste après le passage d’un feu de forêt avec une moyenne de 207,48 plantules du « Ciste de Montpellier ».

![Figure 3: Nombre de plantules de cistes par m² dénombrés au cours des sept premiers mois après le passage du feu (Bekdouche, 2010).](image-url)
Conclusion

Dans ce chapitre, nous avons présenté une description du Ciste de Montpellier, défini sa morphologie, son aire de répartition ainsi que les quantités estimées de cette espèce. D’après les travaux qui ont été réalisés sur le Ciste de Montpellier, on peut noter un certain nombre de points essentiels :

- Le Ciste de Montpellier caractérise les sols dégradés, pauvres en nutriments et proches des zones côtières méditerranéennes.
- Cette espèce est hautement inflammable en vue de sa composition en résine qui lui procure cette propriété.
- Les Garrigues et les maquis méditerranéens, très souvent touchés par les feux de forêts, sont tapissés de Cistacées qui fleurissent entre le printemps et l’été (avril-juin).
- Le ciste de Montpellier est très abondant dans plusieurs régions côtières en Algérie et provenant d’une source renouvelable ce qui permet sa mise en œuvre dans plusieurs domaines afin de le substituer aux bois de nos forêts. Les quantités issues du débroussaillement doivent avoir une utilisation judicieuse. Actuellement, ces déchets ligno-céllulosiques sont simplement brulés.
- Absence de toute valorisation de cette espèce en panneaux de particules, qui est l’objectif de notre étude.
Chapitre II : Panneaux de particules lignocellulosiques

Introduction

Les panneaux de particules lignocellulosiques peuvent se définir comme des bio-composites en plaque mono ou multi couches d’épaisseur variable, fabriqués sous pression et chaleur, essentiellement à partir de particules constituées de copeaux de bois avec ou sans apport de liant.

1. Définition

Un panneau de particules lignocellulosiques est une combinaison de matériaux fibreux lignocellulosiques et d’une matrice adhésive dans laquelle les composants gardent leur identité, ils ne se dissolvent pas ou ne se mélangent pas complètement. Ces deux composants sont de formes et de compositions différentes à l’échelle macroscopique et peuvent être physiquement identifiables avec leur interface remarquable (Elgun, 1999).

Se basant essentiellement sur la norme EN 309 (1992), les panneaux de particules lignocellulosiques peuvent se définir comme des bio-composites en plaque mono ou multi couches d’épaisseur variable fabriqués sous pression et chaleur, essentiellement à partir de particules constituées de copeaux de bois ou d'autres déchets ligneux provenant du façonnage du bois et/ou d’autres matières fibreuses lignocellulosiques (anas de lin, bagasse de canne à sucre, chènevotte de chanvre,… etc.) avec ou sans apport de liant (Chow et al.1992 ; Youngquist et al. 1994 ; Rowell.1995 ; Drzal et al. 2002).

2. Importance des panneaux de particules lignocellulosiques

Les panneaux de particules, offrent des propriétés spécifiques qui les rendent très utiles et bien appropriés dans des applications ciblées et diversifiées.

Ils sont utilisés dans les applications courantes et variées telles que l’emballage (palettes et conteneurs), l’habitat (installations fixes de magasin, lambris, portes et pièces de menuiserie, plans de travail, platelage des maisons préfabriquées, sous-couches de plancher, etc.). Le mobilier (meubles résidentiels et de bureaux, armoires de cuisine, rayonnage, etc...), la construction automobile et maritime, les constructions industrielles, le génie civil, le sport, la décoration (bardage, boiserie extérieure, parement de porte, etc).
Les caractéristiques des fibres lignocellulosiques telles que la morphologie, la structure et la composition chimique des fibres lignocellulosiques ont un effet sur les propriétés et le comportement physicochimique des composites dont ils y sont issus.

3. Classification des panneaux

Les panneaux de particules et les panneaux de fibres sont classés suivant la taille des particules, la densité, et le procédé d’élaboration.

Ainsi, suivant la taille des particules, on distingue les panneaux de fibres, les panneaux de particules, les panneaux de copeaux, les panneaux de lamelles minces et longues et les contre plaqués.

Suivant la densité, il y a les panneaux d’isolation thermique et acoustique de faible densité ($150 \leq p \leq 450$), les panneaux de fibres (MDF) et les panneaux de particules de densité moyenne ($450 < p \leq 800$) pour l’ameublement principalement et enfin les panneaux structuraux de haute densité ($p > 800$).

Suivant le procédé de fabrication, on distingue les panneaux obtenus par voie sèche et ceux produits par voie humide.

L’état de la surface des panneaux de particules permet de définir les panneaux bruts non poncés, des panneaux poncés ou rabotés, des panneaux revêtus avec un verni ou une peinture et des panneaux revêtus sous pression avec un matériau solide par placage tels que les panneaux de particules surfacés mélaminés (PPSM) et enfin des panneaux revêtus d’un papier sec ou d’un stratifié décoratif.

Selon la forme, les panneaux de particules sont plats. La dimension et la forme des particules font distinguer des panneaux de particules arrondies, plates (waferboard), en lamelles minces, longues et orientées (Oriented Strand Board OSB) et des panneaux avec d’autres types de particules comme les anas de lin.

Suivant la structure des panneaux de particules, les panneaux peuvent être monocouche, et plus fréquemment "trois couches", ou multicouches avec souvent différents types de particules disposées avec ou sans orientation spécifique (NF EN 309). Certaines propriétés des panneaux sont présentées en Annexe 4.
4. Le processus de fabrication des panneaux de particules lignocellulosiques

4.1. Le taux d’encollage :

Le taux d’encollage correspond à la quantité de résine consommée pour la fabrication d’un panneau. Il est couramment exprimé comme le pourcentage de résine solide sur la masse moyenne de copeaux anhydres, utilisés pour la fabrication des couches internes et externes du panneau. Classiquement le taux d’encollage varie de 8-10% pour la couche interne et de 11-13% pour les couches externes (Figure 4).

![Figure 4: Taux d’encollage](image)

La résine représente environ 40 % du prix d’un panneau, il est donc important que la quantité de résine utilisée soit toujours la plus basse possible pour des raisons économiques (Dunky et al., 2002).

Néanmoins, du point de vue technologique, un taux minimum de résine est nécessaire pour garantir un collage correct des particules et par conséquent améliorer les propriétés du panneau. Cette quantité minimale de résine varie dans des intervalles assez étroits et dépend du type de résine utilisée. Par ailleurs, une quantité excessive de résine présente des inconvénients technologiques, comme un taux élevé d’humidité qui se traduit par des problèmes de pression de vapeur élevée pendant le processus de pressage à chaud.

Une quantité inférieure de résine utilisée ne signifie pas seulement un coût inférieur du panneau mais cela élimine aussi certains désavantages liés à l’apport d’humidité de la part de la résine. Si cette quantité d’eau est assez basse, spécialement dans les copeaux de la couche interne du panneau, il n’y aura pas de problèmes de pression de vapeur trop élevée pendant le cycle de pressage. Si au contraire, la quantité d’eau présente dans la couche interne du panneau est trop élevée, la pression de vapeur élevée dans le panneau tendra à faire éclater le panneau à la fin du cycle de pressage. Si la différence de pression de vapeur entre les couches externes et interne est plus petite, le transfert de chaleur sera retardé. Donc, si la quantité d’humidité de la couche interne est élevée, la quantité d’eau des couches externes doit être réduite.
Le taux d’humidité des copeaux collés, influence la plasticité des particules. Cette plasticité est importante car elle influence la déformation des particules, afin d’augmenter l’aire de contact entre les particules et assurer une bonne liaison.

Un autre facteur influençant le taux d’encollage sur les propriétés hygroscopiques et mécaniques du panneau est la taille et la forme des copeaux, qui a été étudié par de nombreux auteurs (Nenonene, 2009). Le point commun de toutes ces études est l’augmentation des forces de flexion, compression et traction du panneau mais une diminution de la cohésion interne avec l’augmentation de la longueur des copeaux.

4.2 Le pressage

Il existe différentes méthodes de pressage selon le type de presse adoptée et le système d’apport de la chaleur :

4.2.1. Presse multi-étages

Il s’agit de la méthode la plus vieille pour le pressage des panneaux. La chaleur est transférée à l’intérieur du gâteau par la surface. Le principal avantage de ce type de presses, est le coût d’investissement initial qui est faible. Par exemple, aux Etats-Unis, la grande majorité des industries pour la fabrication d’OSB est équipée de ce type de presse.

4.2.2. Presse continue

La presse continue est constituée d’un système de pressage formé de deux rubans en acier et permet la fabrication de tous types de panneaux. Les rubans en acier sont pilotés par des tambours et ils tiennent un tapis roulant à tiges. En comparaison à la presse multi-étages, la presse continue permet un temps de pressage plus court et une production de panneaux ayant des propriétés plus homogènes (Dunky et al., 2002). Par contre la presse multi-étages permet une meilleure flexibilité pour changer les caractéristiques du panneau (épaisseur et taille).
L’image suivante présente la presse continue que nous avons utilisée à TRANSBOIS de Bejaia pour la fabrication de nos panneaux de particules.

Figure 5: Presse continue de Transbois Béjaia (Belkacem et Ameyoud, 2015).

4.2.3. Système à injection de vapeur

Cette méthode est utilisée pour produire des panneaux homogènes. Le système de chauffage est très rapide et entraîne des temps de pressage courts et une bonne plastification du bois. Les capacités productives sont supérieures à 1100 m3/jour.

4.2.4. Préchauffage

L’utilisation de ce système prévoit le préchauffage du gâteau avant son entrée dans la presse chaude. Pour l’utilisation de ce système, il faut considérer deux aspects :

- Plus le système de préchauffage est proche de la presse, plus le risque de pré durcissement de l’adhésif est petit et plus le préchauffage est efficace.
- Le coût énergétique est plus élevé lorsqu’on utilise un préchauffage à hautes fréquences ou micro-ondes qu’un système à injection d’air chaud ou d’un mélange air/vapeur.

Conclusion

Nous avons constaté dans ce chapitre l’importance de la matière lignocellulosique dans l’élaboration de panneaux de particules et le processus de fabrication d’un panneau de particules, ainsi que l’influence de certains paramètres et les méthodes d’élaborations des panneaux sur leurs
caractéristiques intrinsèques.

La fabrication des panneaux de particules s'est beaucoup développée ces dernières années, mais la règlementation sur la réduction des phénols contenue dans les colles est très stricte, ce qui a poussé les fabricants à orienter leurs domaines de recherches vers la confection de colles moins polluantes. Cet aspect fait l’objet du chapitre suivant.
Chapitre III : Les résines synthétiques et naturelles

Introduction

Dans la fabrication des premières colles pour le bois, l'homme a d'abord utilisé des produits d'origine naturelle comme les extraits de poissons, l'amidon, la gélatine ou le blanc d'œuf, avant de développer desadhésifs industriels d'origine synthétique (Elbez et al., 1991).

De 1895 à 1917, la fabrication industrielle des colles est à base de la caséine et la gélatine, elles étaient utilisées dans l’aviation ainsi que dans les charpentes intérieures.

Dans les années 30, les premières colles urée-formaldéhyde et résorcine sont proposées au cours desquelles un film phénolique "Tegofilm" est développé pour l'industrie aéronautique (Neya, 2002). Depuis, bon nombre de colles synthétiques ont été développées parmi lesquelles les plus utilisées actuellement sont les colles à base de phénol et de formaldéhyde (PF), les colles à base d'urée et de formaldéhyde (UF), les colles à base de mélamine, d'urée et de formaldéhyde (MUF) et les colles à base de polyisocyanates (PMDI).

Parallèlement à ces constats, ces dernières décennies ont vu naître autour du globe une volonté croissante de développements écologiques avec la protection et la préservation de l'environnement. Ce fût le cas notamment dans l'industrie du panneau de bois avec un objectif précis, de diminuer considérablement voire, de remplacer intégralement les résines, à bases de dérivés pétroliers, utilisées actuellement, par des résines naturelles à base de tanin et de lignine.

1. Résine urée formaldéhyde

L'urée a été découverte en 1824 par Whêler. La première urée-formol (UF) a été fabriquée aux USA en 1920, mais son utilisation commerciale sous forme de colle ne débute que quelques années plus tard en raison de la pénurie des colles d'origine animale et végétale.

Au niveau de la mise en application, les résines UF présentent des caractéristiques intéressantes : la gamme étendue de températures lors de la fabrication (généralement de 90 à 200°C), leur vitesse de prise (de quelques secondes à quelques minutes), leur couleur blanche, leur prix relativement peu élevé, et enfin leur possibilité d’utilisation pour chaque essence de bois. Les résines UF sont de loin les plus utilisées pour les applications intérieures.
Elles présentent l'avantage considérable d'être peu coûteuses, tout en présentant un bon comportement en usage intérieur. Par contre elles ne résistent pas à l'eau et dégagent du formaldéhyde qui limite son utilisation (Mansouri, 2007).

2. Résine phénol-formaldéhyde

Elle est formée du phénol et du formaldéhyde par polycondensation avec le détachement de l'eau (figure 6). La vitesse de polymérisation dépend du pH, les vitesses les plus grandes correspondant aux pH élevés ou faibles.

Elles ne seront développées qu'à la fin du siècle avec la production industrielle du formaldéhyde qui a permis à la réduction de son coût qui était élevé. Ce n'est que durant la deuxième guerre mondiale et pendant les années suivantes que les résines PF ont été employées plus largement pour tous les types de panneaux à usage extérieur (Mansouri, 2007).

![Figure 6: Réaction du phénol avec le formaldéhyde. (Neya, 2002)](image)

Le phénol réagit avec le formaldéhyde aussi bien en position ortho qu'en position para du groupe hydroxyle qui donnent une structure polymérique extrêmement complexe rendant particulièrement difficile l'étude cinétique de la réaction.
3. Résine mélamine urée formaldéhyde

La mélamine a été découverte en 1834 par Liebig, pour remplacer les résines phénoliques dans la fabrication des panneaux de contreplqué et de particules résistants à l’humidité pour remédier à la mauvaise tenue en milieu humide des résines UF, l’ajout de la mélamine durant la préparation des résines UF peut améliorer considérablement la résistance à l’eau des résines UF.

Elles sont les plus utilisées en Europe dans le cas d'applications extérieures, notamment en France, en Italie et en Espagne. En Europe, la capacité de production de mélamine est inférieure à la demande en raison de son utilisation par l’industrie du papier et l’industrie chimique et pour cela le prix de mélamine est assez élevé.

Les résines MUF sont à usage extérieur ou semi-extérieur. Elles sont souvent employées pour :

- Substituer les résines phénoliques toxiques non respectueuses de l’environnement dans la fabrication des panneaux de contreplqué et de particules résistants à l’humidité ;
- Remédier au faible tenu en milieu humide des résines UF.
- Au niveau des performances et du prix, les résines MUF peuvent être considérées comme intermédiaires entre les UF et les MF : elles résistent mieux aux intempéries que les UF et elles sont moins chères que les résines MF.
- Elles sont aussi incolores, ce qui représente un avantage par rapport aux résines PF.

4. Résine polyisocyanate

Le PMDI correspondant à la polymérisation du 4,4 méthylène diisocyanate polymère (MDI). Le PMDI est le produit synthétique le plus récent dans le domaine des résines thermodurcissables (Deppe, 1972-1977)et trouve d'importantes applications pour le collage bois-métal ou bois-plastique en combinaison avec des résines polyvinylacétate (PVA).

Grâce à ses excellentes propriétés de réticulation, le PMDI pénètre dans les cellules du bois pour créer une adhésion chimique et physique, il permet la fabrication de panneaux avec une excellente résistance à l’eau, des caractéristiques mécaniques améliorées sans dégagement de formaldéhyde à l’état durci (Ersnt, 1985).

Il ne libère pas de formaldéhyde mais la présence de groupes – N=C=O libres peut être
La combinaison de ces deux réactions provoquant à la fois une liaison mécanique mais aussi une véritable liaison chimique expliquant ainsi les hautes performances obtenues avec les colles isocyanate, à l'origine des propriétés hors du commun des panneaux de bois composites.

Il existe aussi des colles plus écologiques qu’on appelle « colle naturelle » comme les tanins et la lignine :

- Les tanins sont des produits qui se trouvent dans toutes les plantes en différentes proportions. Les écorces des arbres, plus particulièrement la partie interne, contiennent en général la quantité la plus significative, mais les tanins sont présents dans l’ensemble du cytoplasme de toutes les cellules végétales.

Les tanins sont considérés comme étant le quatrième groupe de composés d’origine végétale le plus abondant après la cellulose, les hémicelluloses et les lignines, représentant ainsi une part importante du carbone de la biomasse terrestre. Les tanins sont des composés naturels qui ont été utilisés depuis l’antiquité dans la fabrication des articles en cuir. Leur nature phénolique rend leur utilisation comme adhésifs.

- La lignine est un polymère plus complexe sans motif répétitif bien déterminé, de structure polyphénolique dont la structure tridimensionnelle n’est pas connue de façon exacte. La lignine est obtenue par polymérisation oxydative de trois monomères de base, l’alcool coumarylique, l’alcool coniférylique et l’alcool sinapylque dont les proportions varient en fonction de leur origine (Freudenberg et al., 1968).

Pour la fabrication de notre panneau de particules, nous avons utilisé de la résine PF, vu sa disponibilité au niveau de l’entreprise « TRANSBOIS » où nous avons pu élaborer notre panneau à base de particules de Ciste de Montpellier.
Conclusion

Cette revue bibliographique sur les différentes colles existantes, nous a permis de cerner l’importance des adhésifs dans la fabrication des panneaux de particules. En ce moment une priorité est mise en avant afin de développer des colles à faible impact environnemental, suite à une réglementation très stricte au niveau des états européens. Cette genèse sur les colles met fin à la première partie dédiée à une étude bibliographique.

La deuxième partie qui suit, sera consacrée aux moyens et méthodes d’élaboration des panneaux de particules ainsi que la caractérisation de ces derniers et aussi du bois de Ciste de Montpellier.
Introduction

La fabrication des panneaux des particules s'est beaucoup développée ces dernières années avec l'utilisation de nouveaux adhésifs plus écologiques ainsi que de nouveaux types de particules. La demande croissante en panneau de particules à base de particules de bois ces dernières années remet en cause la gestion des peuplements forestiers et pose un problème de coût, ce qui a contraint les fabricants de substituer les particules de bois par des particules provenant de déchets de sous bois parmi lesquels se trouve le ciste de Montpellier. Les panneaux fabriqués à partir du Ciste de Montpellier s'insèrent donc parfaitement dans la tendance actuelle qui prône le respect et la sauvegarde de notre patrimoine forestier. Afin de mieux valoriser le Ciste de Montpellier, des caractérisations physiques, mécaniques, chimiques et thermiques sont réalisées, pour servir de base pour une valorisation adéquate en panneau de particules.

1. Caractérisation chimique

1.1 Préparation des particules pour les analyses chimiques

Les particules de la tige du Ciste sont broyées et tamisées, nous ne retenons pour les analyses que celles qui ont une granulométrie inférieure à 1 mm, lesquelles sont conservées dans un sac en plastique à température ambiante afin que l’humidité s’y uniformise.

1.2. Méthodologie de dosage de la cellulose, de l’hémicellulose et de la lignine

Le protocole d’essai du dosage des ces différents constituants est réalisé suivant des normes françaises :
1.2.1. Extraction des extractibles à l’éthanol/toluène

- Nous avons mis à l’étuve un papier filtre ainsi qu’un ballon de 500 ml et nous les avons pesé à l’état anhydre.
- Nous avons rempli le papier filtre avec 2 gr de sciure de tige et nous avons pesé le tout.
- Ensuite nous avons inséré le papier filtre avec la sciure dans le soxhlet.
- Nous avons rempli le ballon de 500 ml avec 2 volumes de toluène et 1 volume d’éthanol. Ce qui représente environ 134 ml d’éthanol pour 266 ml de toluène.
- Nous avons lancé l’extraction sans oublier de mettre en marche le chauffe ballon et le système de refroidissement (Figure 7). Nous avons laissé l’expérience 4 à 5 h.
- A la fin de l’extraction, nous avons mis le papier filtre à l’étuve.
- Après 24 h dans l’étuve, nous avons pesé le papier filtre à l’état anhydre.
- Nous avons obtenu donc le taux des extractibles du bois (Tapi, 2007).

Figure 7: Extraction des extractibles à l’éthanol/toluène (Belkacem et Ameyoud, 2015)

1.2.2. Taux de cendre

- Le taux de cendres est déterminé par calcination de l’échantillon, il est réalisé comme suit:
- Nous avons mis 1 gr de sciure de la tige dans un creuset en porcelaine, préalablement pesé, dans un four porté à 550°C pendant 6 heures.
- Nous avons refroidi ensuite le creuset dans un dessiccatore et nous avons pesé l’ensemble de la masse.
Nous avons déterminé le pourcentage de matière minérale avec la formulation suivante :

\[
A = \frac{M_3 - M_1}{M_2 - M_1} \times 100\% \quad (1)
\]

Où :

M1 : est la masse du creuset en grammes.
M2 : est la masse du creuset et de l’échantillon en grammes.
M3 : est la masse du creuset et des cendres en grammes (Tappi, 1983).

1.2.3. Dosage des polysaccharides

- Nous avons mis 2gr de sciure de la tige dans un ballon à fond plat contenant 80 ml d’acétate de sodium (CH\textsubscript{3}COONa), nous avons ajouté 2 ml de chlorite de sodium (NaClO\textsubscript{2}) à 27% et nous avons mis le ballon dans un bain-marie à 76°C.
- Nous avons rajouté toutes les heures du chlorite pendant 5 heures.
- La sciure devient blanche au fond du ballon ne révélant que les constituants holocellulosiques.
- Nous avons réalisé la filtration avec du papier filtre préalablement séché ensuite nous l’avons placé dans une étuve chauffée à 103°C jusqu’à un poids constant.
- Nous avons pesé le papier filtre et nous avons comparé le poids avec la masse initiale de sciure (Tappi, 1983).

Figure 8: Dosage des polysaccharides (Belkacem et Ameyoud, 2015).
1.2.4. Distinction de la quantité des hémicelluloses des celluloses

A partir de ce même échantillon de polysaccharides purs, il est possible de distinguer la quantité d’hémicelluloses de celle de la cellulose. Cette dernière, insoluble dans la soude, est principalement composée des sucres au degré de polymérisation le plus élevé. Par contre, la cellulose est composée de chaînes moins longues, subissant une dégradation dans la soude, tout comme les hémicelluloses (parfois appelées cellulose).

- Nous avons mis dans un ballon à fond plat 2 gr de sciure de la tige avec 80 ml d’acétate de sodium (CH₃COONa), nous avons ajouté aussi 2 ml de chlorite de sodium (NaClO₂) à 27% et nous l’avons mis au bain-marie à 76°C.
- Nous avons répété l’ajout de chlorite toutes les heures, pendant 5 heures, la sciure devient blanche au fond du ballon ne révélant que les constituants holocellulosiques.
- Après les 5 heures, nous avons ajouté 25 ml d’une solution d’hydroxyde soude (NaOH) diluée à 17,5% pendant 50 min
- Nous avons réalisé la filtration avec du papier filtre préalablement séché.
- Nous avons versé 15 ml d’acide acétique à 10% sur le mélange de la cellulose récupérée puis nous l’avons lavé avec 500 ml d’eau distillée.
- Nous avons séché le mélange jusqu’à l’obtention d’un poids constant.
- Nous avons pesé le papier filtre, comparé le poids avec la masse initiale et déduit ainsi la masse des hémicelluloses (Tappi, 1983).

1.2.5. Dosage de la lignine de Klason

La quantité de lignine est déterminée selon la norme «Tappi 222 om 88 » (Tappi, 1988) (lignines Klason insolubles). Cette méthode consiste en la dissolution par de l’acide sulfurique concentré, puis dilué à l’ébullition, de la totalité de la matière organique à l’exception des lignines.

- Nous avons introduit dans un ballon de 1 litre environ 1 gr de matière sèche.
- Nous avons ajouté ensuite 15 ml d’acide sulfurique (H₂SO₄) à 72%.
- Nous avons laissé le mélange à température ambiante pendant 2 heures (en agitant régulièrement).
- Nous avons ajouté 560 ml d’eau et nous avons porté l’ensemble à ébullition sous reflux pendant 4 heures.
Partie 2 : Matériels et méthodes

- nous avons refroidi le ballon et nous avons filtré sous vide dans un creuset fritté n°4 (porosité comprise entre 10 et 16 μm) préalablement séché et taré.
- Nous avons rincé ensuite abondamment le filtre avec l’eau déminéralisée afin d’éliminer la matière minérale.
- Nous l’avons laissé sécher dans une étuve à 105°C puis pesé.
- La différence de masse du filtre avant et après filtration constitue la quantité de lignines insolubles.

Figure 9: Dosage de la lignine de Klason (Belkacem et Ameyoud, 2015)

2. Caractérisation mécanique du Ciste de Montpellier

Aucune caractérisation mécanique n’a pu être faite à cause de la non disponibilité des dimensions des éprouvettes relatives aux normes de bois, cela est dû à la quasi absence des Cistes aux stades matures des successions forestières (Bekdouche, 2010).

3. Caractérisation physique du Ciste de Montpellier

En absence des dimensions des éprouvettes relatives aux normes de bois, nous avons utilisé les mêmes particules que nous avons utilisées pour déterminer la composition chimique de cette espèce végétale afin de déterminer la masse volumique et le taux d’humidité que contient le Ciste de Montpellier.

3.1. Détermination de la masse volumique du Ciste de Montpellier

La masse volumique ou bien densité est sans doute de toutes les caractéristiques du bois, la plus importante; c'est un paramètre physique qui vise à préciser à un état d'humidité donné, la quantité
massique de matière ligneuse contenue dans un volume ou dans une section déterminée de bois produit par le cambium (Polge, 1990).

La notion de masse volumique représente la masse par unité de volume.

\[P = \frac{M}{V} \quad (2) \]

Où :

- \(M \) : correspond à la masse de l’échantillon des particules en kg.
- \(V \) : son volume en \(m^3 \).

3.2. Détermination de l’humidité du Ciste de Montpellier

Le bois est un matériau hygroscopique donc capable d'absorber et d'en perdre une partie de l'humidité dans l'air.

On appelle humidité ou degré d'humidité d'un bois, la quantité d'eau qu'il renferme exprimée en pourcentage de son poids à l'état anhydre.

4. Caractérisation thermique du Ciste de Montpellier

4.1. Analyse thermique du Ciste de Montpellier

L’étude de l’analyse thermogravimétrique a pour objectif de déterminer les limites supérieures de température auxquelles les matières premières peuvent être soumises sans préjudice majeur, pour cela des analyses thermiques (ATG/DTG) ont été initiées.

La tenue thermique du Ciste a été évaluée par thermogravimétrie à partir d’une thermo balance STA 409 PC Luxx® (Figure 10). Il est formé principalement d’une balance électronique, d’un système de chauffage et de régulation ainsi que d’un système de conditionnement de l’atmosphère de traitement.
Les thermogrammes ont été enregistrés en milieu atmosphérique sur une gamme de température allant de 25 à 400°C. La vitesse de chauffe utilisée est de 10°C/min. Les particules du Ciste sont broyées puis tamisées. Les particules retenues pour les analyses sont celles ayant une granulométrie de 400 µm (tamis N° 40). Ces particules sont conservées dans des sacs plastiques à la température de la pièce avant l'analyse.

Figure 10: Appareil d’analyse thermogravimétrique (STA 409 PC Luxx®). (Belkacem et Ameyoud, 2015)

Conclusion

Dans ce chapitre, nous avons présenté les différentes méthodes et procédés de caractérisation de la matière fibreuse du Ciste de Montpellier. Dans le chapitre qui suit, nous allons évoquer le processus d’élaboration des panneaux de particules.
Chapitre II : Elaboration des panneaux de particules au laboratoire

Introduction

Notre travail a été réalisé au niveau de l’entreprise TRANSBOIS (Bejaia), Algérie.
L'entreprise est créée en 1972 sous le nom de combinat de bois de Bejaia, son objectif est la production des différents bois et dérivés. L'unité se situe à l'arrière-port de la ville de Bejaia. L’image par satellite de l’entreprise TRANSBOIS est représentée dans la figure ci-dessous.

![Figure 11: Images de l’entreprise TRANSBOIS par satellite Google earth 2011.](image)

1. Les particules du Ciste de Montpellier

Le prélèvement du Ciste de Montpellier étudié, est réalisé à la forêt d’Ait Ghobri (Tizi Ouzou).

1.1. Le broyage

Les Tiges du Ciste de Montpellier ont été broyés avec un broyeur de type mill PALLMANN 1, équipé d’une grille de 18 mm de mailles.
Les figures suivantes présentent le Ciste de Montpellier : avant et après le broyage.

Figure 12: Ciste de Montpellier: (a) avant le broyage, (b) après le broyage (Ameyoud et Belkacem, 2015).

1.2. Le séchage

Les particules récupérées du broyeur sont séchées dans un séchoir à bois pendant 24 heures à 100 °C.

La figure 13 représente le séchoir utilisé pour nos essais au niveau de l’entreprise TRANSBOIS.

Figure 13: Séchoir de l’entreprise TRANSBOIS (Ameyoud et Belkacem, 2015).
1.3. Le tamisage des particules

Une fois séchées, les particules passent sur trois tamis. Le premier a un grillage laissant passer les particules inférieures à 20 mm. Le deuxième tamis laisse passer les particules inférieures à 10 mm et enfin, le troisième tamis laisse passer uniquement la poussière et son grillage a un diamètre de 0,02 mm. (Figure 14).

![Image](image.jpg)

Figure 14: Particules du Ciste de Montpellier après le tamisage à différentes mailles

(Ameyoud et Belkacem, 2015).

2. Préparation du panneau avant le pressage à chaud

2.1. Les panneaux de particules à trois couches

La structure des panneaux fabriqués correspond à un panneau à trois couches, soit deux couches de particules en surface de diamètre identique et une couche de particules au centre de diamètre supérieur à celui des particules en surface. Tout est mélangé à 10 % de résine en poids solide.

Les dimensions des panneaux sont de 350 x 350 x 18 mm.
Les paramètres de fabrication des panneaux de particules sont présentés dans le tableau suivant.

Tableau 1: Paramètres d’élaboration des panneaux de particules à base de particules du Ciste de Montpellier et de colle synthétique

<table>
<thead>
<tr>
<th>Paramètres de fabrication</th>
<th>Panneau de particules à trois couches</th>
<th>Panneau de particules à trois couches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions du panneau</td>
<td>350 x 350 x 18 mm</td>
<td>350 x 350 x 18 mm</td>
</tr>
<tr>
<td>Teneur en liant</td>
<td>10 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Type d’adhésif</td>
<td>Phénol-formaldéhyde (PF)</td>
<td>Phénol-formaldéhyde (PF)</td>
</tr>
<tr>
<td>Type de particules</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

A: 100 % de particules du Ciste de Montpellier,
B: 75 % de particules du Ciste de Montpellier 25 % de particules du Pin d’Alep

2.2. Le cycle de pressage

Les panneaux sont pressés à une pression maximale de 28 kg/cm2, suivie par un cycle de pression décroissante. La température de la presse est de 195°C et la durée totale de pressage est de 8mn maximum.

Nous avons préparé deux panneaux pour chaque type de particules :

- Le premier « A » : 100 % de particules du Ciste de Montpellier
- Le deuxième « B » : 75 % de particules du Ciste et 25 % de particules du Pin d’Alep.
Les figures suivantes présentent le pressage des particules du Ciste de Montpellier

Figure 15: Pressage des particules du Ciste de Montpellier (Belkacem et Ameyoud, 2015).

2.3. Caractérisation des panneaux de particules

Suivant leur domaine d’application et les conditions spécifiques de leur utilisation, les panneaux de particules doivent répondre à des exigences mécaniques générales et spécifiques ; qui sont régies par les normes européennes EN 312-1 à EN 312-7. Annexe 3.

2.3.1. Découpe des panneaux de particules

Chaque panneau de particules est découpé suivant les recommandations des normes suivantes
NF EN 310 pour les essais en flexion trois points.
NF EN 319 pour les essais de cohésion interne
NF EN 317 pour le gonflement en épaisseur et la densité.

2.3.2. Détermination de la masse volumique des panneaux de particules

La masse volumique ou bien densité est sans doute de toutes les caractéristiques du bois, la plus importante; c’est un paramètre physique qui vise à préciser à un état d'humidité donné, la quantité massique de matière ligneuse contenue dans un volume ou dans une section déterminée de bois produit par le cambium (Polge, 1990).
La notion de masse volumique représente la masse par unité de volume.

\[P = \frac{M}{V} \quad (2) \]

Où :

- \(M \) : correspond à la masse de l’échantillon du panneau de particules en kg.
- \(V \) : son volume en m\(^3\).

Nous avons découpé les panneaux de particules pour obtenir des échantillons avec une balance à 0,01 gr selon la norme NF EN 323.

2.3.3. Mesure des propriétés de flexion des panneaux de particules

Nous avons utilisé six éprouvettes de dimensions 150 x 50 mm de chaque panneau de particules afin de déterminer la résistance mécanique en flexion trois points conformément à la norme NF-EN 310. Le module d’élasticité en flexion (MOE) et le module de rupture (MOR) sont calculés suivant les formules suivantes :

\[MOE = \left(\frac{L^3}{4 \times b \times e^2} \right) \left(\frac{F_2 - F_1}{a_2 - a_1} \right) \quad (3) \]

Où :

- \(F_1 \) : la force mesurée pour un déplacement \(a_1 \)
- \(F_2 \) : la force mesurée pour un déplacement \(a_2 \)
- \(L \) : distance entre les points d’appui
- \(b \) : largeur de l’éprouvette
- \(e \) : épaisseur de l’éprouvette

\[MOR = \left(\frac{3 \times L}{2 \times b \times e^2} \right) \times f_{\text{rupture}} \quad (4) \]

Où :

- \(f_{\text{rupture}} \) : la charge mesurée à la rupture
- \(L \) : distance entre les points d’appui
- \(b \) : largeur de l’éprouvette
- \(e \) : épaisseur de l’éprouvette
2.3.4. Détermination de la cohésion interne des panneaux de particules à l’état sec

Six éprouvettes de dimensions 50 x 50 mm collées sur des semelles dont la nature (métal ou bois) sont soumises à la traction perpendiculaire aux faces suivant la norme NF-EN319, afin de déterminer la cohésion interne (Internal Bond: IB) de chaque panneau de particules. Un certain nombre d’informations sur la détermination de la cohésion interne est en Annexe 3 et 4.

La contrainte de cohésion interne est calculée suivant la formule ci-après.

\[f_t = \frac{F_{\text{max}}}{a \times b} \]

Où :

- \(F_{\text{max}} \): contrainte de rupture, en Newtons.
- \(a, b \): longueur et la largeur de l’éprouvette, en mm

L’essai de la traction perpendiculaire est représenté dans la figure 16.

Figure 16: Banc d’essai de traction de marque ZWICK (Belkacem et Ameyoud, 2015).

2.3.5. Détermination de la résistance à l’humidité

La détermination de la résistance à l’humidité selon la norme EN 1087-1 consiste en une immersion des éprouvettes de dimensions 50 x 50mm dans de l’eau bouillante pendant 2 heures. Les échantillons sont ensuite séchés dans une étuve à 103°C pendant 16 heures. Les échantillons sont ensuite testés à l’état humide par traction perpendiculaire par rapport à la surface du panneau.
2.3.6. Détermination du gonflement en épaisseur

La norme européenne NF EN 317 décrit une méthode pour déterminer le gonflement en épaisseur (TS : Thickness Swelling) des panneaux de particules ou six éprouvettes de 50mm x 50mm avant et après leur immersion dans l’eau pendant 24 heures.

Le gonflement Gt en épaisseur de chaque éprouvette est calculé à l’aide de la formule suivante :

\[Gt \text{ (\%)} = \frac{t_2 - t_1}{t_1} \times 100 \]

(6)

Où :

- \(t_1 \) : l’épaisseur de l’éprouvette avant immersion, en mm.
- \(t_2 \) : l’épaisseur de l’éprouvette après immersion, en mm.

Le gonflement en épaisseur d’un panneau est égal à la moyenne arithmétique des résultats obtenus sur l’ensemble des éprouvettes d’un même panneau.

Conclusion

Ce chapitre présente un ensemble d’informations sur le processus d’élaboration des panneaux de particules et les méthodes appliquées pour caractériser leurs différentes propriétés. Ce chapitre, traite aussi les différentes expérimentations réalisées afin de mieux connaître ce matériau nouveau à base de Ciste de Montpellier.

La partie suivante est dédiée aux résultats et discussions.
Partie 3 : Résultats et discussions

Chapitre I: Propriétés physico-chimiques et mécaniques de la matière fibreuse du Ciste de Montpellier

Introduction

La mise en œuvre des matériaux végétaux non conventionnels pour l’élaboration des panneaux de particules suppose une bonne connaissance surtout des propriétés chimiques et thermiques de ces matériaux. Dans ce qui suit, nous présenterons les résultats des analyses du Ciste de Montpellier.

1. Caractérisation chimique du Ciste de Montpellier

Tableau 2: Caractérisation chimique du Ciste de Montpellier

<table>
<thead>
<tr>
<th>Constituant</th>
<th>Holocellulose</th>
<th>Lignine</th>
<th>Extractibles</th>
<th>Cendres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hémicellulose</td>
<td>Cellulose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Ciste de Montpellier</td>
<td>23,40±0,12</td>
<td>41,80±0,18</td>
<td>22,7 ±0,01</td>
<td>6,3±0,01</td>
</tr>
<tr>
<td>Le pin d’Alep (Dilem.2009)</td>
<td>15</td>
<td>42</td>
<td>34</td>
<td>4</td>
</tr>
</tbody>
</table>

Les teneurs en hémicelluloses, en cellulose, en lignine de Klason et en extractibles sont déterminées. Le tableau 2 donne la composition chimique du Ciste de Montpellier.

Les teneurs en holocelluloses (cellulose et hémicelluloses) obtenues sont en moyenne de 65,2 %. Le Pin d’Alep se caractérise aussi par un pourcentage élevé en holocellulose (57 %) (Dilem, 2009).

Le taux de cellulose dans les échantillons du Ciste de Montpellier (41,80) est assez proche des valeurs de teneur en cellulose dans le Pin d’Alep (42 %) (Dilem, 2009 et Daoui, 2014).

Le dosage de la lignine de Klason est effectué selon la méthode normalisée Tappi 222 om 88 qui consiste à hydrolyser les sucres totaux (cellulose et hémicelluloses) par l’acide sulfurique à 72 % suivie par des dosages pondéraux de la lignine.
La moyenne des taux de lignine de tous les échantillons est consignée dans le tableau 2 qui est de 22,7 %, alors que les résultats donnés par Dillem, (2009) pour le Pin d’Alep sont supérieurs à ceux du Ciste de Montpellier qui est de 34 %.

Pour les résultats obtenus à la suite des extractions successives « éthanol-toluène », ils sont en moyenne de 6,3 % ce qui diffère des résultats donnés par Dillem (2009) pour le Pin d’Alep qui est de 4 %.

Le taux de cendre du Ciste de Montpellier dépasse celui du pin d’Alep 6% contre 1% (Dillem, 2009). Cela est du au taux de résine élevé et inflammable.

En conclusion la composition chimique du Ciste de Montpellier ne présente aucun problème pour sa valorisation, il présente des prédispositions afin qu’il soit valorisé en panneaux de particules comme fut le cas du Pin d’Alep.

2. Caractérisation physique du Ciste de Montpellier

2.1. Détermination de la masse volumique du Ciste de Montpellier

Les résultats obtenus de la masse volumique des différents échantillons du Ciste de Montpellier étudiés sont présentés dans le tableau 3.

Tableau 3: Masse volumique des différents échantillons du Ciste de Montpellier étudiés.

<table>
<thead>
<tr>
<th>Numéro de l’échantillon</th>
<th>Echantillon 1 (Kg/m³)</th>
<th>Echantillon 2 (Kg/m³)</th>
<th>Echantillon 3 (Kg/m³)</th>
<th>Moyenne (Kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique</td>
<td>149,8</td>
<td>150,3</td>
<td>148,1</td>
<td>149,4± 1,53</td>
</tr>
</tbody>
</table>

Nous remarquons que la masse volumique du Ciste est largement inférieure (149,9 Kg/m³) à celle du Pin d’Alep qui varie entre 400 à 800 kg/m³ et aussi à celle du cèdre 550 kg/m³ (Guidoum ,2007). Ces résultats montrent que le Ciste de Montpellier est léger par rapport à certaines essences se trouvant dans la forêt de Yakouréne et dans le massif du Djurdjura.
2.2. Détermination de l’humidité

Les résultats de l’humidité sont présentés dans le tableau suivant :

Tableau 4: Taux d’humidité prélevé des différents échantillons du Ciste de Montpellier étudiés.

<table>
<thead>
<tr>
<th></th>
<th>Echantillon 1</th>
<th>Echantillon 2</th>
<th>Echantillon 3</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux d’humidité</td>
<td>20,58</td>
<td>19,90</td>
<td>20,05</td>
<td>20,18± 0,36</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nous avons trouvé que le taux d’humidité est de 20% ce qu’il le classe vers des bois secs. La méthode utilisée pour la détermination du taux d’humidité est imposée par la physisomie du bois. Or le Ciste de Montpellier se trouve sous forme d’arbustes donc de sous bois avec des diamètres très réduits, ce qui nous a contraint de déterminer l’humidité sur du Ciste séché et broyé. Il nous a été impossible de déterminer la cartographie de l’humidité afin de la comparer avec d’autres essences du fait des aspects cités précédemment.

3. Caractérisation thermique du Ciste de Montpellier

La caractérisation thermique est réalisée afin d’étudier le comportement du Ciste à différentes températures et ainsi cerner sa température de dégradation.

Figure 17: Thermogrammes des analyses thermogravimétriques (ATG/DTG) du Ciste de Montpellier.
La figure 17 représente les thermogrammes (ATG/DTG) du Ciste de Montpellier. Elle montre l’évolution de la perte de masse en pourcentage de la masse initiale de l’échantillon du Ciste et ce en fonction de l’évolution de la température.

L’allure du thermogramme présente une bonne stabilité thermique. En effet, la courbe de l’ATG de l’échantillon du Ciste de Montpellier montre trois phases principales dans l’évolution de la pyrolyse. Chaque phase est caractérisée par une vitesse de perte de masse spécifique.

La première phase, endothermique, se situe dans la plage de température allant de 50 à 212 °C correspondant à une perte de masse de 5,94 % pour la pyrolyse sous air. Dans cette phase, l’évolution de la perte de masse se fait en deux parties : entre 50 et 153 °C, l’essentiel de la perte de masse est observée, puis n’évolue pratiquement plus entre 153 et 212 °C.

Le phénomène de perte de masse observé dans cette première phase est attribué essentiellement à la déshydratation du Ciste.

La deuxième phase, plus importante que la première, se situe entre 212 et 364 °C pour la pyrolyse sous air.

La courbe est caractérisée par une pente très forte correspondant à une perte de masse plus importante. Cette deuxième phase, exothermique, correspond à la décomposition du matériel végétal sec. La masse de l’échantillon chute de 94,06 % à 34,46 %.

Selon Ramiah (1970), les températures de destruction des hémicelluloses et de la cellulose sont de 320 °C et 360°C respectivement et celle de la destruction de la lignine est de 360 °C.

La troisième phase, qui va au delà de 360 °C et qui continue normalement jusqu’à la carbonisation, correspond à la destruction du reste de la matière organique transformée pour la plupart en produit carbonisé au cours de la deuxième phase. Cette phase se caractérise par une diminution de la vitesse de perte de masse.

A haute température, la perte de masse du Ciste est quasi-totale parce que l’analyse chimique du Ciste a montré une teneur en matière minérale nettement plus faible qui est de 6 %. Le processus de pyrolyse s’arrête à 400°C, limite de notre équipement.
Le tableau qui suit résume le comportement thermique de la fibre du Ciste de Montpellier.

Tableau 5: Comportement thermique de la fibre du Ciste de Montpellier.

<table>
<thead>
<tr>
<th>Gamme de températures de déshydratation du Ciste (1ère Phase) (°C)</th>
<th>50-212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse perdue pendant la déshydratation (1ère phase) (%)</td>
<td>5,94</td>
</tr>
<tr>
<td>Température de début de décomposition (°C)</td>
<td>212</td>
</tr>
<tr>
<td>Gammes de températures de la 2ème perte de masse (°C)</td>
<td>212-360</td>
</tr>
<tr>
<td>Masse perdue pendant la 2ème décomposition (%)</td>
<td>59,6</td>
</tr>
<tr>
<td>Température à 50 % de la perte de masse (°C)</td>
<td>353</td>
</tr>
<tr>
<td>Température maximale de dégradation (°C)</td>
<td>360</td>
</tr>
</tbody>
</table>

Conclusion

Les propriétés chimiques, et thermiques du Ciste de Montpellier ont été étudiées dans la perspective de l’élaboration de panneaux de particules.

Les compositions chimiques de la matière première végétale sélectionnée pour notre étude ont révélées que ce matériau présente des aptitudes favorables pour son utilisation en panneaux de particules. Une attention particulière doit être prise en compte: la température de chauffage doit principalement se situer entre 150°C et 212°C pour les opérations de mise en forme des panneaux de particules thermopressés.

La définition des conditions opératoires suivis de l’élaboration de panneaux de particules à base du Ciste de Montpellier feront l’objet du chapitre suivant.
Chapitre II : Panneaux de particules à base du Ciste de Montpellier

Introduction

Après avoir étudié les caractéristiques physico-chimiques de la matière première retenue pour l’élaboration de notre panneau de particules, nous présenterons, dans ce chapitre, les propriétés mécaniques et physiques en élaborant deux types de panneaux de particules à trois couches dans le but d’obtenir des panneaux de particules stables à usage extérieur : le premier est composé de particules de Ciste de Montpellier à 100 % qu’on a nommé (A) et le deuxième est composé de 75 % de particules de Ciste de Montpellier et de 25 % de particules du Pin d’Alep qu’on a nommé (B).

1. Détermination de la masse volumique des panneaux de particules

Le tableau 6 présente l’ensemble des valeurs obtenues des masses volumiques pour les différents panneaux de particules élaborés.

Tableau 6: Résultats des essais de masse volumique

<table>
<thead>
<tr>
<th>Masse volumique (Kg/m³)</th>
<th>Panneau 1</th>
<th>Panneau 2</th>
<th>Panneau 3</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,78</td>
<td>0,80</td>
<td>0,79</td>
<td>0,79 ± 0,01</td>
</tr>
<tr>
<td>B</td>
<td>0,81</td>
<td>0,82</td>
<td>0,80</td>
<td>0,82 ± 0,01</td>
</tr>
</tbody>
</table>

Le panneau A, constitué de particules élaboré à partir de particules de Ciste de Montpellier a une masse volumique quasi similaire à celui élaboré à base du mélange (Ciste + Pin d’Alep) : B, mais un peu plus léger d’environ 4 %. Le Ciste de Montpellier et le Pin d’Alep présentent un taux de cellulose suffisant (41,8 et 42 %) qui leur permet d’augmenter la rigidité des composites étant donné que la cellulose a fortement tendance à former des liaisons hydrogènes qui sont responsables de la nature rigide de sa structure.
2. Mesure des propriétés de flexion des panneaux de particules

Les résultats de caractérisation des deux types de panneaux (A et B) sont rassemblés dans le tableau 7.

Tableau 7: Propriétés mécaniques des panneaux testés.

<table>
<thead>
<tr>
<th>Type de panneau</th>
<th>Masse volumique (Kg/m³)</th>
<th>MOE (MPa)</th>
<th>MOR (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.79 ± 0.01</td>
<td>1055.5 ± 100.1</td>
<td>16.51 ± 1.06</td>
</tr>
<tr>
<td>B</td>
<td>0.82 ± 0.01</td>
<td>1975.4 ± 102.5</td>
<td>24.86 ± 0.85</td>
</tr>
</tbody>
</table>

Selon la norme EN 312 (2005), les exigences minimales pour le MOR des panneaux de particules à des utilisations générales et agencements intérieurs (y compris les meubles) sont respectivement : 11,5 et 13,0 MPa, tandis que le minimum MOE pour agencements intérieurs est de 1600 MPa.

Selon les figures 18 et 19 le meilleur MOR et MOE sont obtenus en utilisant les particules de Ciste de Montpellier mélangées à celles du Pin d’Alep avec respectivement : 24,86 et 1055.5 MPa.

Les panneaux de types A et B sont conformes aux exigences minimales du MOR pour l’usage général et agencements intérieurs, y compris la fabrication de meubles selon la norme européenne (EN 312).

La valeur moyenne du MOE du type de panneau « B » répond parfaitement aux exigences minimales pour l’usage général et agencements intérieurs y compris la fabrication de meubles selon la norme européenne alors que ce n’est pas le cas pour le panneau de type « A ».

Nous pouvons expliquer cela par le fait que la colle utilisée (PF) présente une meilleure compatibilité avec les particules du Pin d’Alep, car les particules obtenues à partir de ce dernier étaient broyées et tamisées en entreprise TRANSBOIS de manière industrielle contrairement à celles du Ciste de Montpellier que nous avons tamisées manuellement.
Figure 18: Comparaison des valeurs du MOR des deux panneaux élaborés.

Figure 19: Comparaison des valeurs du MOE des deux panneaux élaborés.
La figure 20 montre que la fissure de l’éprouvette après traction perpendiculaire se situe au milieu ; cela s’explique par le fait que les particules et la colle que composent notre panneau de particules sont réparties de façon homogène.

Figure 20: Fissure de l’éprouvette après l’essai de flexion (Belkacem et Ameyoud, 2015).

3. Détermination de la cohésion interne des panneaux de particules à l’état sec

Selon la figure 21, la cohésion interne (IB) des deux types de panneaux de particules élaborés : A et B sont respectivement 0,73 et 0,44 MPa. L’exigence minimale selon la norme EN 312 est de 0,24 MPa pour les usages généraux, 0,35 MPa pour l’agencement intérieur et 0,50 MPa pour des panneaux travaillant sous contrainte élevée.

Le type de panneau « B » répond aux exigences de la norme EN 312 pour l’usage générale, l’agencement intérieur, y compris la fabrication de meubles.

Par contre, il présente une cohésion interne inférieure 0,44 MPa qui est la norme de référence, ce qui nous amène à l’utiliser sous de faibles contraintes.

Ceci est fondamentalement lié à la formation de vide causé par la faible adhésion interfaciale entre les particules du Ciste de Montpellier et celle du Pin d’Alep puisqu’elles n’ont ni la même granulométrie ni la même forme.
La figure suivante montre les résultats de la cohésion interne des deux types de panneaux élaborés.

Figure 21: Comparaison des valeurs de l’IB sec des deux types de panneaux élaborés
Les figures 22 et 23, montrent que la fissure de l’éprouvette après traction perpendiculaire se situe au milieu ; cela s’explique par le fait que les particules et la colle qui composent notre panneau de particules sont réparties de façon homogène. Aussi la granulométrie au milieu du panneau est assez grande par rapport à celle sur les surfaces. Des études antérieures (Daoui 2013 et Benlatreche 2011) ont montrées que le profil de densité des panneaux est moins grand au milieu, ce qui contribue à la rupture des panneaux justement au milieu des éprouvettes.

Figure 22: Fissure de l’éprouvette après traction perpendiculaire (Ameyoud et Belkacem, 2015).

Figure 23: Eprouvettes décollées après traction perpendiculaire (Belkacem et Ameyoud, 2015).
4. Détermination de la résistance à l’humidité et du gonflement en épaisseur

Le tableau suivant représente les variations des résultats de cohésion interne humide et le gonflement en épaisseur des panneaux de particules à base de Ciste de Montpellier par rapport aux panneaux de particules de Ciste et de Pin d’Alep.

Tableau 8: Variations des résultats de cohésion interne humide et de gonflement en épaisseur en mm.

<table>
<thead>
<tr>
<th>Type de panneau</th>
<th>Cohésion interne Humide</th>
<th>Gonflement en épaisseur 24H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00</td>
<td>14,43 ± 0,01</td>
</tr>
<tr>
<td>B</td>
<td>00</td>
<td>10,64 ± 0,01</td>
</tr>
</tbody>
</table>

Les résultats de cohésion interne humide sont nuls (00 MPa) pour les deux types de panneaux, les panneaux se sont décollés juste après les avoir retirés de l’eau bouillante. Cela peut être expliqué par le fait que nous avons fait bouillir les éprouvettes avant leur traction et que la colle qui a joué le rôle du liant n’a pas joué son rôle à de hautes températures, cependant les particules du Ciste de Montpellier sont des matériaux hydrophiles.

Ces panneaux présentent un pourcentage élevé en cellulose (42 %) et donc contiennent des groupements hydroxyles qui favorisent l’absorption d’eau (Nourbakhsh, 2011).

Se référant à la norme EN 312, l’épaisseur maximale de gonflement, après 24h d’immersion dans l’eau, est de 15 %. Le pourcentage de gonflement en épaisseur pour les deux types de panneaux répond parfaitement aux conditions de la norme EN 312 (15 %).

Ces deux types de panneaux sont fabriqués avec de la colle phénol formaldéhyde (PF) et ont montré une résistance à la pénétration de l’eau observée sur les valeurs de gonflement en épaisseur.

Ceci s’explique aisément par le fait que le phénol formaldéhyde lui-même est connu pour être résistant à l’eau, même à des températures élevées (Guler, 2004).
Partie 3 : Résultats et discussions

Chapitre II : Panneaux de particules à base du Ciste de Montpellier

Le gonflement en épaisseur du Ciste de Montpellier est représenté dans la figure 24.

![Image](image24.png)

Figure 24: Gonflement en épaisseur (Belkacem et Ameyoud, 2015).

Conclusion

De par nos essais, nous avons mis en évidence la possibilité d’utilisation des particules issues du Ciste de Montpellier dans la fabrication des panneaux et testé leurs propriétés physiques et mécaniques en les comparant avec des panneaux de particules élaborés en industrie. Nous avons aussi testé un panneau constitué d’un mélange de Ciste et de Pin d’Alep qui de par ses résultats montrent la possibilité d’exploiter cette valorisation du ciste en panneau de particules.

Les résultats probants de nos investigations laissent entrevoir une réelle possibilité d’exploitation de ces peuplements de Ciste de Montpellier. Une étude économique et de faisabilité est nécessaire afin de passer à une exploitation industrielle ce qui sera d’un apport appréciable pour une économie régionale. Il est aussi important dans les travaux à venir d’optimiser le taux d’ajout du Pin d’Alep, qui nous fera ressortir le meilleur ratio Ciste/Pin d’Alep.
Conclusion générale et perspectives

Le mémoire présenté vise la mise au point de panneaux de particules à partir de sous produits de bois forestier dont le Ciste de Montpellier.

Cette espèce est très abondante dans les forêts méditerranéennes sa présence en grande quantité qui est disponible en Algérie pourrait avantageusement être mise au profit dans la réalisation des panneaux. Au delà de la fabrication de produits de substitution avec le ciste de Montpellier, il s'agit de favoriser le développement d'une activité économique aussi bien industrielle qu'artisanale.

Les propriétés physico-chimiques et mécaniques montrent qu’il peut servir de source en matière première pour l’élaboration des panneaux de particules.

La suite des essais effectués devait déterminer la performance et l’évaluation du potentiel du Ciste de Montpellier mélangé à du pin d’Alep pour la fabrication des panneaux de particules. Cette étape a permis de tester deux types de panneaux de particules. Le premier contient des particules de Ciste de Montpellier. Le deuxième est élaboré à partir de 75% de particules de Ciste mélangées avec 25% de particules du Pin d’Alep. Pour des conditions de collage équivalentes notamment avec de la résine phénol-formaldéhyde, nous avons observé un meilleur comportement des panneaux à base du mélange lors des essais mécaniques réalisés.

Les caractéristiques des panneaux obtenus avec les particules de Ciste de Montpellier (Masse volumique = 0,79 Kg/m3; MOE =1055,5; MOR = 16,51; IB = 0,73 MPa; TS = 14,43 %) sont satisfaisantes pour une utilisation comme panneaux de particules. Il est aussi important dans les travaux à venir d’optimiser le taux d’ajout du Pin d’Alep, qui nous fera ressortir le meilleur ratio Ciste/Pin d’Alep.

Cette hypothèse que le Ciste de Montpellier peut être valorisé en panneaux de particules s’annonce comme une solution alternative pour limiter l’exploitation forestière des essences nobles (cèdre, chênes etc.) et de la biodiversité en leur substituant un biomatériau dont la matière première est abondante et sans valeur commerciale.
Ce nouveau débouché pour le Ciste de Montpellier permettrait de susciter le débroussaillement qui de par ce fait limite les feux de forêts, leur propagation et dont les frais d’exploitation seraient honorés par les industriels de cette nouvelle filière.

L’étude menée sur le Ciste de Montpellier a montré qu’en valorisant ce sous produit de bois, nous avons réglé deux problèmes environnementaux :

- Récupérer un déchet pour en faire un nouveau matériau à des utilisations générales et agencements intérieurs.
- Arrêter la déforestation et préserver les ressources naturelles en essences nobles.
- Limiter le nombre d’incendies et leurs propagations en exploitant cette espèce de sous bois par débroussaillements et l’utilisation de ce déchet qui auparavant était brûlé et génère donc d’autres polluants qui sont des gaz à effets de serre.

Il est intéressant de donner une suite à ce travail sous forme de projet de fin d’études ou de projet de recherche. Cette suite doit axer sur des recherches en mettant en œuvre des colles naturelles à base de lignine ou d’hybrides (lignine + ajout). Il est aussi important d’optimiser le pourcentage de Pin d’Alep dans le Panneau de particules, et de voir son influence sur le comportement mécanique et rhéologique.

Aussi, il est important pour les prochaines études de diversifier les sites de prélèvement afin de nous affranchir de l’effet station.
Résumé

Le Ciste de Montpellier est considéré comme étant une espèce végétale pyrophyte et hautement inflammable qui cause la dégradation de la végétation de nos forêts. C’est pour cela que les autorités parviennent à la débroussailler et l’in cinérer chaque année afin de limiter la propagation des feux de forêts.

Face à ce problème qui touche l’environnement, aux besoins de plus en plus importants en matériaux performants et à la nécessité d’une utilisation rationnelle et durable des ressources naturelles disponibles, l’industrie des panneaux de particules ouvre la voie à la valorisation de matières premières telle que le Ciste de Montpellier que nous avons choisi dans ce travail de mémoire en tant que source de particules pour l’élaboration des panneaux de particules.

C’est cette approche que nous avons choisie d’explorer dans ce travail de mémoire en partant de l’hypothèse que l’on peut obtenir des panneaux de particules de résistance mécanique suffisante pour les utiliser comme matériaux à diverses fins en liant des particules de Ciste de Montpellier avec des colles synthétiques.

Mots clés: Ciste de Montpellier, panneaux de particules, valorisation.

Abstract

The *Cistus of Montpelliensis* is considered as a plant species which is highly flammable and causes degradation of the vegetation of our forests. That is why the authorities manage to clear brush and incinerated each year to limit the spread of forest fires.

Faced with this problem that affects the environment, the needs of more and more important in performance materials and the need for rational and sustainable use of natural resources available, the particle board industry opens the door to the valorization of raw materials such as Cistus of Montpelliensis which is chosen in this working memory as a particle source for the development of particle board.

This is the approach that we have chosen to explore in the working memory in the assumption that we can obtain particle board with sufficient mechanical resistance for use as materials for various purposes by linking particles of *Cistus of Montpelliensis* with synthetic adhesives.

Key words: Cistus of Montpelliensis, particle board, valorization.
Références bibliographiques

Benlatreche Y., 2011. Contribution à l'amélioration de la durée de vie d'outils carbure pour l'usinage du MDF (Medium Density Fiberboard) par application de dépôts ternaires (CrAlN, CrVN) et modification de l'arête de coupe, thèse de doctorat ENSAM de Cluny, pp 12-18.

Julve Ph. et Baseflor., 2015. Index botanique, écologique et chorologique de la flore de France.

Normes européennes sur le bois

NF EN 310, Panneaux à base de bois, Détermination du module d’élasticité en flexion et de la résistance à la flexion, 1993.

NF EN 317, Panneaux e particules et panneaux de fibres, Détermination du gonflement en épaisseur après immersion dans l’eau, 1993.

NF EN 319, panneaux de particules et panneaux de fibres-Détermination de la résistance à la traction perpendiculaire aux faces des panneaux, 1993.

NF EN 323, Panneaux à base de bois, Détermination de la masse volumique, 1993.

NF EN 1087-1, Panneaux de particules, Détermination de la résistance à l’humidité, 1995.

Tappi T 203 om-83 Alpha, beta and gamma cellulose in pulp and wood. TAPPI Test Methods, Atlanta, 1983.

Tappi, Solvent extractives of wood and pulp. T 204 cm-97, mars 2007.
Webographie

Guide des espèces végétales adaptées au département des Pyrénées Orientales

Le conseil général des Pyrénées-Orientales.

www.Risqueincendie.com/syco/arbustes/ciste_montpellier.ph
Annexe 1

Classification des espèces végétales selon la note d’inflammabilité

Tableau 1 : Classification des espèces végétales selon la note d’inflammabilité.

<table>
<thead>
<tr>
<th>Note intensité de combustion</th>
<th>Espèces</th>
<th>Strates</th>
<th>Familles</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faible intensité de combustion</td>
<td>7,89 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laviandra dentata</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Withania frutescens</td>
<td>Herbacée</td>
<td>Solanacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cistus salvifolius</td>
<td>Herbacée</td>
<td>Cistacées</td>
<td>D</td>
</tr>
<tr>
<td>Moyenne intensité de combustion</td>
<td>28,94 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cistus ladaniferus</td>
<td>Arbusitive</td>
<td>Cistacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cistus monspeliensis</td>
<td>Herbacée</td>
<td>Cistacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Armpelodesma mauritanicum</td>
<td>Arbusitive</td>
<td>Poacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Arbutus unedo</td>
<td>Arboresce</td>
<td>Ericacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Asparagus stipularis</td>
<td>Arbusitive</td>
<td>Liliacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Calycotome intermedia</td>
<td>Arbusitive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Acacia cyanophylla</td>
<td>Arboresce</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Ceratonia silqua</td>
<td>Arboresce</td>
<td>Césalpiniées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cytisus triflourus</td>
<td>Arbusitive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Erica arborea</td>
<td>Arbusitive</td>
<td>Ericacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Galium verum</td>
<td>Herbacée</td>
<td>Rubiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Globularia alpynum</td>
<td>Herbacée</td>
<td>Globulariacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Juniperus oxycedrus</td>
<td>Arboresce</td>
<td>Cupressacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Lavandula stoehchas</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Olea europaea</td>
<td>Arboresce</td>
<td>Oléacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Pinus halepensis</td>
<td>Arboresce</td>
<td>Pinacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Quercus suer</td>
<td>Arboresce</td>
<td>Fagacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rhamnus alaternus</td>
<td>Arbusitive</td>
<td>Rhamnacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rosa canina</td>
<td>Arboresce</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rubus ulmifolius</td>
<td>Arbusitive</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Tetraclinis articulata</td>
<td>Arboresce</td>
<td>Cupressacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Ulex parviflorus</td>
<td>Arbusitive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Chamaerops humilis</td>
<td>Arbusitive</td>
<td>Palmae</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Daphne genidium</td>
<td>Arbusitive</td>
<td>Thyméolacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Asparagus albus</td>
<td>Arbusitive</td>
<td>Liliacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Crataegus oxyacantha</td>
<td>Arbusitive</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Echium vulgare</td>
<td>Herbacée</td>
<td>Boraginacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Phagnalon saxatile</td>
<td>Herbacée</td>
<td>Astéracées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Quercus flaginea</td>
<td>Arboresce</td>
<td>Fagacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Lonicera implexa</td>
<td>Arboresce</td>
<td>Caprifoliacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Prisman majus</td>
<td>Arbusitive</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Salvia verbenaca</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Thymus ciliatus</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Euphorbia helioscopiae</td>
<td>Herbacée</td>
<td>Euphorbiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Ballota hispanica</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td>Forte intensité de combustion</td>
<td>63,15 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note : Classe D végétation feuillue dense, G végétation herbacée épineuse, M végétation herbacée.
Annexe 2

Classification des espèces végétales selon la note d’intensité de combustion

Tableau 2: Classification des espèces végétales selon la note d’intensité de combustion

<table>
<thead>
<tr>
<th>Note intensité de combustion</th>
<th>Espèces</th>
<th>Strates</th>
<th>Familles</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forte intensité de combustion</td>
<td>Cistus ladaniferus</td>
<td>Arbustive</td>
<td>Cistacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cistus monspeliensis</td>
<td>Herbacée</td>
<td>Cistacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Amelodesma mauritianicum</td>
<td>Arbustive</td>
<td>Poacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Arbutus unedo</td>
<td>Arbustive</td>
<td>Ericacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Asparagus stipularis</td>
<td>Arbustive</td>
<td>Liliacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Calycotome intermedia</td>
<td>Arbustive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Acacia cyanophylla</td>
<td>Arbustive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Ceratonia siliqua</td>
<td>Arbustive</td>
<td>Césalpinées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cytisus triflorus</td>
<td>Arbustive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Erica arborea</td>
<td>Arbustive</td>
<td>Ericacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Gallium verum</td>
<td>Herbacée</td>
<td>Rubiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Globularia alypum</td>
<td>Herbacée</td>
<td>Globulariacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Juniperus oxycedrus</td>
<td>Arbustive</td>
<td>Cupressacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Lavandula stoechas</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Olea europaea</td>
<td>Arbustive</td>
<td>Oleacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Pinus halepensis</td>
<td>Arbustive</td>
<td>Pinacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Quercus super</td>
<td>Arbustive</td>
<td>Fagacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rhamnus alaternus</td>
<td>Arbustive</td>
<td>Rhamnacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rosa canina</td>
<td>Arbustive</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Rubus ulmifolius</td>
<td>Arbustive</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Tetraclinis articulata</td>
<td>Arbustive</td>
<td>Cupressacées</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Ulex parviflorus</td>
<td>Arbustive</td>
<td>Fabacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Chamaepeps humilis</td>
<td>Arbustive</td>
<td>Palmae</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Daphne gnidiyum</td>
<td>Arbustive</td>
<td>Thymélacées</td>
<td>D</td>
</tr>
<tr>
<td>Moyenne intensité de combustion</td>
<td>Asparagus albus</td>
<td>Arbustive</td>
<td>Liliacées</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Cretaegus oxyacantha</td>
<td>Arbustive</td>
<td>Rosacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Echium vulgare</td>
<td>Herbacée</td>
<td>Boraginacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Phagnalon saxatile</td>
<td>Herbacée</td>
<td>Astéracées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Quercus faginea</td>
<td>Arbustive</td>
<td>Fagacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Lonicera impexa</td>
<td>Arbustive</td>
<td>Caprifoliacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Prunus majus</td>
<td>Arbustive</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Salvia verbenaca</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Thymus ciliatus</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Euphorbia helioscopoe</td>
<td>Herbacée</td>
<td>Euphorbiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Ballota hirsuta</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td>Faible intensité de combustion</td>
<td>Lavandula dentata</td>
<td>Herbacée</td>
<td>Lamiacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Withania frutescens</td>
<td>Arbustive</td>
<td>Solanacées</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cistus salvifolius</td>
<td>Herbacée</td>
<td>Cistacées</td>
<td>D</td>
</tr>
</tbody>
</table>
Annexe 3

Détermination de la cohésion interne

La norme européenne NF EN 319 décrit une méthode pour déterminer la résistance à la traction perpendiculaire aux faces (« cohésion interne ») des panneaux de particules, de fibres et de particules liées au ciment.

- Panneaux pour usage général utilisés en milieu sec\(^2\) (P2) [100];
- Panneaux pour agencements intérieurs (y compris les meubles) utilisés en milieu sec (P3) [100];
- Panneaux travaillant utilisés en milieu sec (P4) [101];
- Panneaux travaillant utilisés en milieu humide\(^3\) (P5) [102];
- Panneaux travaillant sous contrainte élevée utilisés en milieu sec (P6) [103];
- Panneaux travaillant sous contrainte élevée utilisés en milieu humide (P7) [104];

Si l’on considère la gamme d’épaisseur de 13 à 20 mm, les exigences pour la cohésion interne (EN 319) [105] pour les différents types de panneaux sont décrites dans le tableau 3.

Tableau 3. Exigences pour les panneaux dont l’épaisseur est comprise dans la gamme de 13 à 20 mm décrites dans les parties de 2 à 7 de la norme EN 312

<table>
<thead>
<tr>
<th></th>
<th>Cohesion interne à sec (MPa)</th>
<th>Cohesion interne après essai dans l'eau bouillante (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0,45</td>
<td>0,14</td>
</tr>
<tr>
<td>P6</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>0,70</td>
<td>0,23</td>
</tr>
</tbody>
</table>

\(^2\)Le milieu sec est caractérisé par une humidité dans le matériau qui correspond à une température de 20°C et une humidité relative de l’air environnant ne dépassant 65% que quelques semaines par an.

\(^3\)Le milieu humide est caractérisé par une humidité dans le matériau qui correspond à une température de 20°C et une humidité relative de l’air environnant ne dépassant 85% que quelques semaines par an.
Annexe 4

Caractérisation mécaniques requises pour les panneaux

Tableau 4: Caractéristiques mécaniques requises pour les panneaux utilisés en extérieur en conditions sèches (norme EN12 – 4)

<table>
<thead>
<tr>
<th>Gamme d’épaisseur (mm)</th>
<th>Cohésion interne (MPa)</th>
<th>Module d’élasticité (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6 à 13</td>
<td>0,40</td>
<td>2700</td>
</tr>
<tr>
<td>>13 à 20</td>
<td>0,35</td>
<td>2500</td>
</tr>
<tr>
<td>>20 à 25</td>
<td>0,30</td>
<td>2550</td>
</tr>
<tr>
<td>>25 à 32</td>
<td>0,25</td>
<td>2000</td>
</tr>
<tr>
<td>>32 à 40</td>
<td>0,20</td>
<td>1700</td>
</tr>
<tr>
<td>>40</td>
<td>0,20</td>
<td>1500</td>
</tr>
</tbody>
</table>

Tableau 5: Caractéristiques mécaniques requises pour les panneaux utilisés à l’intérieur en conditions sèches (ameublement), (Norme EN12 – 3)

<table>
<thead>
<tr>
<th>Gamme d’épaisseur (mm)</th>
<th>Cohésion interne (MPa)</th>
<th>Module d’élasticité (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6 à 13</td>
<td>0,40</td>
<td>2100</td>
</tr>
<tr>
<td>>13 à 20</td>
<td>0,35</td>
<td>1900</td>
</tr>
<tr>
<td>>20 à 25</td>
<td>0,30</td>
<td>1750</td>
</tr>
<tr>
<td>>25 à 32</td>
<td>0,25</td>
<td>1600</td>
</tr>
<tr>
<td>>32 à 40</td>
<td>0,20</td>
<td>1400</td>
</tr>
</tbody>
</table>

Tableau 6: Exigences pour utilisation générale des panneaux de particules par rapport aux normes européennes EN12 – 2.

<table>
<thead>
<tr>
<th>Gamme d’épaisseur (mm)</th>
<th>Cohésion interne (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6 à 13</td>
<td>0,28</td>
</tr>
<tr>
<td>>13 à 20</td>
<td>0,24</td>
</tr>
<tr>
<td>>20 à 25</td>
<td>0,20</td>
</tr>
<tr>
<td>>25 à 32</td>
<td>0,17</td>
</tr>
<tr>
<td>>32 à 40</td>
<td>0,14</td>
</tr>
</tbody>
</table>